Muonic bound systems, virtual particles, and proton radius
نویسندگان
چکیده
منابع مشابه
Muonic hydrogen and the proton radius puzzle
The extremely precise extraction of the proton radius by Pohl et al. from the meaAnnu. Rev. Nucl. Part. Sci. 2013, Vol. 63. doi: 10.1146/annurev-nucl-102212-170627 sured energy difference between the 2P and 2S states of muonic hydrogen disagrees significantly with that extracted from electronic hydrogen or elastic electron-proton scattering. This is the proton radius puzzle. The origins of the ...
متن کاملProton Zemach radius from measurements of the hyperfine splitting of hydrogen and muonic hydrogen
While measurements of the hyperfine structure of hydrogen-like atoms are traditionally regarded as test of bound-state QED, we assume that theoretical QED predictions are accurate and discuss the information about the electromagnetic structure of protons that could be extracted from the experimental values of the ground state hyperfine splitting in hydrogen and muonic hydrogen. Using recent the...
متن کاملProton structure effects in muonic hydrogen
The proton structure effects, including finite size, polarizability and self– energy is considered and their influence on energy levels of muonic hydrogen is recalculated. A new theoretical prediction for the Lamb shift is presented together with improved values of all known QED contributions. PACS numbers 36.10 Dr, 12.20 Ds, 31.30 Jv Typeset using REVTEX E-mail address: [email protected]
متن کاملBound-state field-theory approach to proton-structure effects in muonic hydrogen
A bound-state field-theory approach to muonic hydrogen is set up using a variant of the Furry representation in which the lowest-order Hamiltonian describes a muon in the presence of a point Coulomb field, but the origin of the binding field is taken to be three charged quarks in the proton, which are modeled as Dirac particles that move freely within a spherical well. Bound-state field-theory ...
متن کاملProton Polarization Shifts in Electronic and Muonic Hydrogen
The contribution of virtual excitations to the energy levels of electronic and muonic hydrogen is investigated combining a model-independent approach for the main part with quark model predictions for the remaining corrections. Precise values for the polarization shifts are obtained in the long-wavelength dipole approximation by numerically integrating over measured total photoabsorption cross ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2015
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.92.012123